If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+85x+56=0
a = 11; b = 85; c = +56;
Δ = b2-4ac
Δ = 852-4·11·56
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(85)-69}{2*11}=\frac{-154}{22} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(85)+69}{2*11}=\frac{-16}{22} =-8/11 $
| 2x²+3x+4=0 | | x-34=6 | | 8z-50=-5 | | 56m^2-15m-56=0 | | 2x^2+12x-12=2 | | 6x+3=10x-25 | | 6x+1=10x-25 | | x=-15=30 | | x-153=7 | | 3(2x+10/5=2x-5 | | 2(x+5)/3=6 | | (X+1)(x+2)=10 | | 24=-6/7w | | (5t-3)^1/9-(2t-4)1/9=0 | | 55/44=22/x | | 1.2=10-x-10x÷100 | | 2.17=7x-13 | | 95/38=57/x | | 7x-13=6x-7 | | X/4-2x-1/3=x-5/6 | | 1=-5x-3 | | 2x+3(0)=15 | | 2|6-5/3x|+8=26 | | x=40-10 | | x=10-40 | | 1=-x-7 | | 3(2x+3)=6(x+3) | | -x-7=-5x-3 | | 2(n+5)=3(20+4n) | | -3(6n-6)+2n=24 | | -1=-7x+9 | | -7x+9=7x+23 |